Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 921: 171098, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387572

RESUMO

Understanding the acclimation capacity of reef corals across generations to thermal stress and its underlying molecular underpinnings could provide insights into their resilience and adaptive responses to future climate change. Here, we acclimated adult brooding coral Pocillopora damicornis to high temperature (32 °C vs. 29 °C) for three weeks and analyzed the changes in phenotypes, transcriptomes and DNA methylomes of adult corals and their brooded larvae. Results showed that although adult corals did not show noticeable bleaching after thermal exposure, they released fewer but larger larvae. Interestingly, larval cohorts from two consecutive lunar days exhibited contrasting physiological resistance to thermal stress, as evidenced by the divergent responses of area-normalized symbiont densities and photochemical efficiency to thermal stress. RNA-seq and whole-genome bisulfite sequencing revealed that adult and larval corals mounted distinct transcriptional and DNA methylation changes in response to thermal stress. Remarkably, larval transcriptomes and DNA methylomes also varied greatly among lunar days and thermal treatments, aligning well with their physiological metrics. Overall, our study shows that changes in transcriptomes and DNA methylomes in response to thermal acclimation can be highly life stage-specific. More importantly, thermally-acclimated adult corals could produce larval offspring with temporally contrasting photochemical performance and thermal resilience, and such variations in larval phenotypes are associated with differential transcriptomes and DNA methylomes, and are likely to increase the likelihood of reproductive success and plasticity of larval propagules under thermal stress.


Assuntos
Antozoários , Animais , Antozoários/genética , Transcriptoma , Epigenoma , Aclimatação/fisiologia , Mudança Climática , Larva , Recifes de Corais
2.
Mar Environ Res ; 193: 106218, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38039737

RESUMO

The co-occurrence of elevated seawater temperature and local stressors (heavy metal contamination) affects the ecophysiology of phototrophic species, and represents a risk to the environmental quality of coral reefs. Therefore, we investigated the effects of both Cu alone and Cu in combination with elevated temperature (ET) on the physiology of the coral Galaxea fascicularis, and measured the parameters related to the photo-physiology and oxidative state. G.fascicularis is one of the dominant coral species in the South China Sea which exhibits strong adaptability to environmental stress. We exposed the common coral species G.fascicularis to a series of environmentally relevant concentrations of Cu at 29 °C (normal temperature, NT) and 32 °C (elevated temperature, ET) for 96 h. Single polyps were used in the experiments, which reduced individual variability when compared to the coral colonies. The results suggested that: i) Cu or ET had significant negative effects on the actual operating ability of photosystem Ⅱ (PSII), but not on the maximal chlorophyll fluorescence in darkness (Fv/Fm). ii) Symbiodiniaceae density was significantly reduced by high Cu concentrations, for Cu-NT and Cu-ET, a high concentration of Cu (40 µg/L) significantly impacted Symbiodiniaceae density, causing a 75.4% and 81.0% decrease, respectively. iii) the content of malondialdehyde (MDA) in coral tissues increased significantly under Cu-ET. iv) a certain range of copper concentration (25-30 µg/L) increased the pigment content of the Symbiodiniacea. Our results indicated that the combined stressors of Cu and ET made the coral tissue sloughed, caused the coral tissue damaged by lipid oxidation, reduced the photosynthetic capacity of the Symbiodiniacea, and led to the excretion of Symbiodiniacea.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Cobre/toxicidade , Temperatura , Recifes de Corais
3.
Plants (Basel) ; 12(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687286

RESUMO

Faba bean is an important cool-season edible legume crop that is constantly threatened by abiotic stresses such as drought. The basic leucine zipper (bZIP) gene family is one of the most abundant and diverse families of transcription factors in plants. It regulates plant growth and development and plays an important role in the response to biotic and abiotic stresses. In this study, we identified 18 members of the faba bean bZIP transcription factor family at the genome-wide level based on previous faba bean drought stress transcriptome sequencing data. A phylogenetic tree was constructed to group the 18 VfbZIP proteins into eight clades. Analysis of cis-acting elements in the promoter region suggested that these 18 VfbZIPs may be involved in regulating abiotic stress responses such as drought. Transcriptome data showed high expression of seven genes (VfbZIP1, VfbZIP2, VfbZIP5, VfbZIP7, VfbZIP15, VfbZIP17, and VfbZIP18) in the drought-tolerant cultivar under drought stress, in which VfbZIP1, VfbZIP2, and VfbZIP5 were consistently expressed as detected by quantitative real-time polymerase chain reaction (qRT-PCR) compared to the transcriptome data. Ectopic overexpression of the three VfbZIPs in tobacco, based on the potato Virus X (PVX) vector, revealed that VfbZIP5 enhanced the drought tolerance. Overexpressed VfbZIP5 in plants showed lower levels of proline (PRO), malondialdehyde (MDA), and peroxidase (POD) compared to those overexpressing an empty vector under 10 days of drought stress. Protein-protein interaction (PPI) analysis showed that VfbZIP5 interacted with seven proteins in faba bean, including VfbZIP7 and VfbZIP10. The results depict the importance of VfbZIPs in response to drought stress, and they would be useful for the improvement of drought tolerance.

4.
Mol Ecol ; 32(5): 1098-1116, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36528869

RESUMO

Thermal priming of reef corals can enhance their heat tolerance; however, the legacy effects of heat stress during parental brooding on larval resilience remain understudied. This study investigated whether preconditioning adult coral Pocillopora damicornis to high temperatures (29°C and 32°C) could better prepare their larvae for heat stress. Results showed that heat-acclimated adults brooded larvae with reduced symbiont density and shifted thermal performance curves. Reciprocal transplant experiments demonstrated higher bleaching resistance and better photosynthetic and autotrophic performance in heat-exposed larvae from acclimated adults compared to unacclimated adults. RNA-seq revealed strong cellular stress responses in larvae from heat-acclimated adults that could have been effective in rescuing host cells from stress, as evidenced by the widespread upregulation of genes involved in cell cycle and mitosis. For symbionts, a molecular coordination between light harvesting, photoprotection and carbon fixation was detected in larvae from heat-acclimated adults, which may help optimize photosynthetic activity and yield under high temperature. Furthermore, heat acclimation led to opposing regulations of symbiont catabolic and anabolic pathways and favoured nutrient translocation to the host and thus a functional symbiosis. Notwithstanding, the improved heat tolerance was paralleled by reduced light-enhanced dark respiration, indicating metabolic depression for energy saving. Our findings suggest that adult heat acclimation can rapidly shift thermal tolerance of brooded coral larvae and provide integrated physiological and molecular evidence for this adaptive plasticity, which could increase climate resilience. However, the metabolic depression may be maladaptive for long-term organismal performance, highlighting the importance of curbing carbon emissions to better protect corals.


Assuntos
Antozoários , Termotolerância , Animais , Antozoários/genética , Recifes de Corais , Larva , Termotolerância/genética , Aclimatação , Simbiose
6.
Sci Total Environ ; 842: 156851, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35750167

RESUMO

The successful dispersal of coral larvae is vital to the population replenishment and reef recovery and resilience. Despite that this critical early stage is susceptible to ocean warming and acidification, little is known about the responses of coral larvae to warming and acidification across different biological scales. This study explored the influences of elevated temperature (29 °C versus 33 °C) and pCO2 (500 µatm versus 1000 µatm) on brooded larvae of Pocillopora damicornis at the organismal, cellular and gene expression levels. Heat stress caused bleaching, depressed light-enhanced dark respiration, photosynthesis and autotrophy, whereas high pCO2 stimulated photosynthesis. Although survival was unaffected, larvae at 33 °C were ten-times more likely to settle than those at 29 °C, suggesting reduced capacity to disperse and differentiate suitable substrate. Remarkably, heat stress induced greater symbiont loss at ambient pCO2 than at high pCO2, while cell-specific pigment concentrations of symbionts at 33 °C increased twofold under ambient pCO2 relative to high pCO2, suggesting pCO2-dependent bleaching patterns. Considerable increases in activities of host antioxidants superoxide dismutase (SOD) and catalase (CAT) at 33 °C indicated oxidative stress, whereas lipid peroxidation and caspase activities were contained, thereby restraining larval mortality at 33 °C. Furthermore, the coral host mounted stronger transcriptional responses than symbionts. High pCO2 stimulated host metabolic pathways, possibly because of the boosted algal productivity. In contrast, host metabolic processes and symbiont photosystem genes were downregulated at 33 °C. Interestingly, the upregulation of extracellular matrix genes and glycosaminoglycan degradation pathway at 33 °C was more evident under ambient pCO2 than high pCO2, suggesting compromised host tissue integrity that could have facilitated symbiont expulsion and bleaching. Our results provide insights into how coral larvae respond to warming and acidification at different levels of biological organization, and demonstrate that ocean acidification can mediate thermal bleaching and gene expression in coral larvae under heat stress.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Recifes de Corais , Expressão Gênica , Resposta ao Choque Térmico , Concentração de Íons de Hidrogênio , Larva , Oceanos e Mares , Água do Mar
7.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35563170

RESUMO

Marker-assisted selection enables breeders to quickly select excellent root architectural variations, which play an essential role in plant productivity. Here, ten root-related and shoot biomass traits of a new F6 recombinant inbred line (RIL) population were investigated under hydroponics and resulted in high heritabilities from 0.61 to 0.83. A high-density linkage map of the RIL population was constructed using a Brassica napus 50k Illumina single nucleotide polymorphism (SNP) array. A total of 86 quantitative trait loci (QTLs) explaining 4.16-14.1% of the phenotypic variances were detected and integrated into eight stable QTL clusters, which were repeatedly detected in different experiments. The codominant markers were developed to be tightly linked with three major QTL clusters, qcA09-2, qcC08-2, and qcC08-3, which controlled both root-related and shoot biomass traits and had phenotypic contributions greater than 10%. Among these, qcA09-2, renamed RT.A09, was further fine-mapped to a 129-kb interval with 19 annotated genes in the B. napus reference genome. By integrating the results of real-time PCR and comparative sequencing, five genes with expression differences and/or amino acid differences were identified as important candidate genes for RT.A09. Our findings laid the foundation for revealing the molecular mechanism of root development and developed valuable markers for root genetic improvement in rapeseed.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Brassica rapa/genética , Mapeamento Cromossômico , Genômica , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
8.
Mar Environ Res ; 177: 105613, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35429821

RESUMO

Recently, increasing evidence suggests that reef-building corals exposed to elevated suspended solids (SS) are largely structured by changes in underwater light availability (ULA). However, there are few direct and quantitative observations in situ support for this hypothesis; in particular, the contribution of SS to the diffuse attenuation coefficient of the photosynthetically active radiation (Kd-PAR) variations is not yet fully understood. Here, we investigated the variations in ULA, the structure of coral assemblages, and the concentration and composition of SS on the Luhuitou fringing reef, Sanya, China. Light attenuation was rapid (Kd-PAR: 0.60 ± 0.39 m-1) resulting in a shallow euphotic depth (Zeu-PAR) (<11 m). Benthic PAR showed significant positive correlations with branching and corymbose corals (e.g. Acropora spp.), while massive and encrusting species (e.g. Porites spp.) dominated the coral communities and showed no significant correlations with PAR. These results indicate that the depth range available for coral growth is shallow and the tolerance to low-light stress differs among coral species. Notably, Kd-PAR showed no significant correlations with the grain size fractions of SS, whereas significant positive correlations were found with its organic fraction content, demonstrating that the light attenuation of SS is mainly regulated by particulate organic matter (POM). Intriguingly, our isotopic evidence revealed that POM concentration contributed the most to changes in Kd-PAR, with its source being slightly less important. Combined, our results highlight ULA regulated by POM is an important factor in contributing to changes in coral assemblages on inshore turbid reefs, and reducing the input of terrestrial materials, especially POM, is an effective measure to alleviate the low-light stress on sensitive coral species.


Assuntos
Antozoários , Animais , China , Recifes de Corais , Material Particulado/toxicidade
9.
Sci Total Environ ; 807(Pt 2): 151251, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34728194

RESUMO

Climate change causes ocean warming and acidification, which threaten coral reef ecosystems. Ocean warming and acidification cause bleaching and mortality, and decrease calcification in adult corals, leading to changes in the composition of coral communities; however, their interactive effects on coral larvae are not comprehensively understood. To examine the underlying molecular mechanisms of larval responses to elevated temperature and pCO2, we examined the physiological performance and protein expression profiles of Pocillopora damicornis at two temperatures (29 and 33 °C) and pCO2 levels (500 and 1000 µatm) for 5 d. Extensive physiological and proteomic changes were observed in coral larvae. The results indicated a significant decrease in net photosynthesis (PNET) and autotrophic capability (PNET/RD) of larvae exposed to elevated temperature but a marked increase in PNET and PNET/RD of larvae exposed to high pCO2 levels. Elevated temperature significantly reduced endosymbiont densities by 70% and photochemical efficiency, indicating that warming impaired host-symbiont symbiosis. Expression of photosynthesis-related proteins, the photosystem (PS) I reaction center subunits IV and XI as well as oxygen-evolving enhancer 1, was downregulated at higher temperatures in symbionts, whereas expression of the PS I iron­sulfur center protein was increased under high pCO2 conditions. Furthermore, expression of phosphoribulokinase (involved in the Calvin cycle) and phosphoenolpyruvate carboxylase (related to the C4 pathway) was downregulated in symbionts under thermal stress; this finding suggests reduced carbon fixation at high temperatures. The abundance of carbonic anhydrase-associated proteins, which are predicted to exert biochemical roles in dissolved inorganic carbon transport in larvae, was reduced in coral host and symbionts at high temperatures. These results elucidate potential mechanisms underlying the responses of coral larvae exposed to elevated temperature and acidification and suggest an important role of symbionts in the response to warming and acidification.


Assuntos
Antozoários , Animais , Ecossistema , Concentração de Íons de Hidrogênio , Larva , Proteômica , Temperatura
10.
Plants (Basel) ; 10(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34961040

RESUMO

Roots are complicated quantitative characteristics that play an essential role in absorbing water and nutrients. To uncover the genetic variations for root-related traits in rapeseed, twelve mature root traits of a Brassica napus association panel were investigated in the field within three environments. All traits showed significant phenotypic variation among genotypes, with heritabilities ranging from 55.18% to 79.68%. Genome-wide association studies (GWAS) using 20,131 SNPs discovered 172 marker-trait associations, including 103 significant SNPs (-log10 (p) > 4.30) that explained 5.24-20.31% of the phenotypic variance. With the linkage disequilibrium r2 > 0.2, these significant associations were binned into 40 quantitative trait loci (QTL) clusters. Among them, 14 important QTL clusters were discovered in two environments and/or with phenotypic contributions greater than 10%. By analyzing the genomic regions within 100 kb upstream and downstream of the peak SNPs within the 14 loci, 334 annotated genes were found. Among these, 32 genes were potentially associated with root development according to their expression analysis. Furthermore, the protein interaction network using the 334 annotated genes gave nine genes involved in a substantial number of interactions, including a key gene associated with root development, BnaC09g36350D. This research provides the groundwork for deciphering B. napus' genetic variations and improving its root system architecture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...